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1 Introduction

In our final project, we implement an object detection function based on deep
learning with R-CNN. We have tested it on four datasets taken from PKU’s
different sites and got quite satisfactory results.

Meanwhile, we tried to work it out on Faster-RCNN. It’s a pity that we do
not succeed to get the final result till now.

The following introduction is about several algorithms relating to fast-RCNN
and our implementing work. Then we will make a conclusion considering our
test result and summarize what we learned through the project.
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2 RCNN and SPP-net

This part will introduce the algorithm of RCNN and SPP-net.

2.1 Main process of R-CNN

2.1.1 Region proposals

A variety of methods can be used to generate category-independent region
proposals. Examples include: sliding window, selective search, etc.

2.1.2 Feature extraction

In [1], they extract a 4096-dimensional feature vector from each region pro-
posal using the Caffe [3] implementation of the CNN described by Krizhevsky
et al. [4]. Features are computed by forward propagating a mean-subtracted
227 × 227 RGB image through five convolutional layers and two fully connected
layers.

2.1.3 Category classification

Train a detection classifier rather than simply use outputs from the final layer
(fc8) of the fine-tuned CNN. In [1], the author optimize one linear SVM per class.

2.2 R-CNN has notable drawbacks

Training is a multi-stage pipeline. R-CNN first finetunes a ConvNet on object
proposals using log loss. Then, it fits SVMs to ConvNet features. These SVMs
act as object detectors, replacing the softmax classifier learnt by fine-tuning. In
the third training stage, bounding-box regressors are learned.

Training is expensive in space and time. With very deep networks, such
as VGG16, this process takes 2.5 GPU-days for the 5k images of the VOC07
trainval set. These features require hundreds of gigabytes of storage.

Object detection is slow. At test-time, features are extracted from each object
proposal in each test image. Detection with VGG16 takes 47s / image (on a
GPU).

After resizing the image to 227 × 227, we will lose some information about
the objection. The following pictures show an example of information loss.
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Figure 1:

Figure 2:
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2.3 SPPnet

R-CNN is slow because it performs a ConvNet forward pass for each ob-
ject proposal, without sharing computation. Spatial pyramid pooling networks
(SPPnets) [2] were proposed to speed up R-CNN by sharing computation. The
SPPnet method computes a convolutional feature map for the entire input im-
age and then classifies each object proposal using a feature vector extracted
from the shared feature map.

2.4 SPPnet also has notable drawbacks

Like R-CNN, training is a multi-stage pipeline that involves extracting fea-
tures, fine-tuning a network with log loss, training SVMs, and finally fitting
bounding-box regressors. Features are also written to disk.

Accuracy limitation. The fine-tuning algorithm proposed in [2] cannot up-
date the convolutional layers that precede the spatial pyramid pooling. Fixed
convolutional layers limits the accuracy of very deep networks.
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3 Fast R-CNN

3.1 Advantages

1 Higher detection quality

2 Training is single-stage, using a multi-task loss

3 Training can update all network layers

4 No disk storage is required for feature caching

3.2 Improvement of design

1 Extract features of the entire image at one time

2 Feature extraction, classification, optimization of the object proposal are in-
tegrated in a single network

3.3 Main architecture

The following picture [5] shows the main architecture of Fast R-CNN. It
takes as input an entire image and a set of object proposals. The network first
processes the whole image with several convolutional and max poolinglayers to
produce a conv feature map.

Then, for each object proposal a region of interest (RoI) pooling layer ex-
tracts a fixed-length feature vector from the feature map. Each feature vector
is fed into a sequence of fully connected(fc) layers that finally branch into two
sibling output layers:one that produces softmax probability estimates overK ob-
ject classes plus a catch-all “background” class andanother layer that outputs
four real-valued numbers for eachof theK object classes. Each set of 4 values
encodes refinedbounding-box positions for one of the K classes.
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Figure 3:

4 Our Works

Our project is based on the project made by Ross Girshick (github.com/rbgirshick/fast-
rcnn, for dataset INRIA). We modified and added some codes, accomplishing
to train the neural network and run the object detection program with dataset
PKUSVD.

4.1 Brief introduction of directory structure

(directory) caffe-fast-rcnn
containing the framework of Fast-RCNN using caffe implementation

(directory) data
containing the pretrained models and the cache to read files

(directory) experiments
containing the config file and the run log file
some scripts that can get model for ImageNet, and Fast-RCNN model
trained by the author
dataset PASCAL-VOC

(directory) lib
some Python interfaces, e.g. “datasets” for loading data from database,
“config”for configuration option to train CNN

(directory) matlab
containing matlab interfaces and some python interfaces.
calling matlab interface to implement detection

(directory) models
containing 3 model files for networks of different scales: CaffeNet for small
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network, VGG16 for large network, VGGCNMM 1024 for middle network

(directory) output
Storing the output file of network training

(directory) proposal
containing two algorithms’ implementation for determining object propos-
als: ACF and Edgebox

containing the Python code for network training and dataset test, very
important part of our work

(directory) tools

(directory) toolbox
matlab library for ACF and EdgeBox

(file) trainmergevgg16.sh
a script to run network test

4.2 Implementation

4.2.1 Region Proposals

1 Using Aggregate Channel Features to detect possbile pedestrians, and using
Edgebox to detect possible cars.

2 Results are stored in directory /proposal

3 We used this algorithms to get two detectors, cardetector.mat and trained-
persondetector.mat, then we use detectors to process the proposalBound-
ing box, finishing the region proposal work.

4 Our code is mainly based on getProposalBBox.m.This function, as its name
suggests, gets bounding box proposals and saves them in the specific path
in a ’.mat file’

i.detect car using edgeBox set up some options for edgeBoxes: step
size of sliding window search, nms threshold, minScore of boxes to
detect and maxBoxes as max number of boxes. We use a trained
model ’car detector’ to do this work.

ii.detect person using ACF set up some options for acf feature de-
tector: cascThr as constant cascade threshold, cascCal as cascade
calibration, pNms as params for non-mamimal suppresion. Then we
use a trained model ’trained person detector’ to do this work.

iii.postprocess the boxes to the format fast r-cnn needed
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Figure 4:

10



4.2.2 Training

1 This is the crucial part of our whole project. We will introduce the function
of /tools/train net.py. It mainly realize following functions: transporting
training data, loading nueral network, adjusting the parameter of network,
and producing output. This program schedule the entire work of Fine
Tuning.

2 Concrete Work

i Receive parameters about network training, deciding which network
model we should load

ii Initialize Caffe framwork(including ’gpu’,’solver’,’iters’,’weights’,’cfg’,’imdb’,’rand’)

iii Receive the data of object proposals, then generate the imdb format
data with function bisai multiclass, and convert it to roidb format
with function get training roidb().

iv After getting the roidb data and the corresponding neural network,
call training func. Training func adjusted the weight of each param-
eter.The main function is train net()

4.2.3 Data Test

1 Mainly scheduled by /tools/test net.py

2 Main work:

i Define the test func for a single image:

* Get object proposals. Obtain data in imdb format

* Sift the bounding boxes by None-Max-Suppression

* Set up enviroment for Caffe framework, and score each region in
bounding box.

ii Call test func for every image in four groups, produce output.

iii Change format and integrate all output results.
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5 Summary

We have succeeded to use Fast-RCNN for object detection in PKUSVD.

We encountered with many difficulties in implementing the project. We gain
some experience during the work as well.

Getting familiar with algorithm is the essential part of the work. We also re-
ferred to many materials such as the documentation of Fast-RCNN and blogs of
other researchers. We also consulted a senior schoolmate, getting much impor-
tant advice. To face the challenge contacting with so many executive programs
including complicated Caffe framework, Python and Matlab interfaces, and to
deal with different data format (imdb, riodb), we must make it clear how the files
are organized and how the functions relate. Moreover, it also need patience and
carefullness when setting up environment, scheduling the order of compilation,
linking and calling. Writing ”makefile” is troublesome in the project.
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6 Result

6.1 Feedback from MLG Lab

Now our Recalls for four test-datas are 0.91/0.87/0.88/0.74 respectively.
Average 0.80.

Our Presicions for four test-datas are 0.85/0.70/0.85/0.80 respectively.
Average 0.85.

Our fscore for four test-datas are 0.88/0.78/0.87/0.77 respectively.

6.1.1 Detection Time

1 On GPU Cluster of MGL Lab

2 1s per image without warm-up

3 0.1s per image after warm-up

4 1500 × 4 × 0.3 = 1800s

6.1.2 Proposal Time

About 2400s = 1500 × 4 × 0.4

6.1.3 Total

1s/image

6.2 Conclusion from Case Study

1 Some people not annotated by Ground Truth are detected by our Algorithm

2 Mask the picture for promoting the performance

i Mask the area far away from us

ii Mask the area with no possibility to find a person or car

iii Location Info featured?

3 Compared with the example shown by our senior in class(Precision 87.1%,Re-
call 79.6%), precision rate of our results differs little, but the recall rate is
much lower than the example’s.

Test result of dataset ”southeastern gate” did not meet our expectation.
After analysis, we found that there is severe occlusion between people and
cars, which is the main cause leading to the low recall rate. Our current
program has no good solution in this situation.
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Figure 5: Ground Truth

Figure 6: Detection Result
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Figure 7:

7 Future Work

We are trying to use Faster-RCNN in training and testing in order to pursue
an all the more fast speed.

Faster-RCNN introduced a Region Proposal Network (RPN) that shares full-
image convolutional features with the detectionnetwork, thus enabling nearly
cost-free region proposals. An RPN is a fully-convolutional network that simul-
taneously predicts object bounds and objectness scores at each position. RPNs
are trained end-to-end to generate high quality region proposals, which are used
by Fast R-CNN for detection. With a simple alternating optimization, RPN and
Fast R-CNN can be trained to shareconvolutional features.

We have finished data loading, but when we tried to use a fully-connected
layer with 3 output units as the last layer, the results are not consistent with
our expectation. We are still trying to explore the reason.
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